Intermittency in random optical layers at total reflection

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19797
(http://iopscience.iop.org/0305-4470/19/5/033)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:11

Please note that terms and conditions apply.

Intermittency in random optical layers at total reflection

J P Bouchaud \dagger and P Le Doussal \ddagger
\dagger Laboratoire de Spectroscopie Hertzienne de l'Ecole Normale Supérieure, Laboratoire associé au Centre National de la Recherche Scientifique, 24, rue Lhomond, 75231 Paris Cedex 05, France
\# Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, Laboratoire Propre du Centre National de la Recherche Scientifique, associé à l'Ecole Normale Supérieure et à l’Université de Paris Sud, 24, rue Lhomond, 75231 Paris Cedex 05, France

Received 4 June 1985

Abstract

We show that the reflection coefficient r of a succession of N random optical layers has a well defined, but sample-dependent, limit when $N \rightarrow \infty$. The probability distribution of r at total reflection is found to depend only on $(\operatorname{Im} r) / \xi^{2 / 3}$ where ξ^{2} is the noise variance. The analytical expressions appearing in this localisation problem are found to be the same as the universal functions describing intermittency with noise.

1. Introduction

We wish to discuss the following physical problem: consider a succession of N layers such that the optical index of the i th layer is of the form $n_{i}=\bar{n}\left(1+\xi_{i}\right)$ where ξ_{i} is a (small) random variable such that $\left\langle\xi_{i}\right\rangle=0$.

A light beam, sent from a medium with an optical index n_{0} larger than \bar{n}, falls on the 'one-dimensional random medium' obtained by piling together N layers of thickness l (figure 1).

An interesting situation occurs when the incidence angle reaches the 'average critical angle' defined by

$$
n_{0} \sin \theta_{\mathrm{c}}=\bar{n} .
$$

Schematically, when ξ_{i} is positive the light beam is transmitted, while it is reflected when ξ_{i} is negative. What happens 'on average'? What can be said about the transmission and reflection coefficients as functions of the noise variance $\left\langle\xi_{i}^{2}\right\rangle=\sigma$?

Figure 1. The system considered and the definition of the notation introduced in the text.

A problem of this kind has been considered for acoustic waves in a random-layered medium (Baluni and Willemsen 1984), but for a normal incidence, and only the frequency dependence of the transmission coefficient has been determined. The chain of random impedance studied by Akkermans and Maynard (1984) is formally equivalent to our problem but the 'critical incidence' (corresponding to resonance, $L C \omega^{2}=1$, but without dissipation $-R=0$) has not been investigated. The problem we are interested in can also be cast in the form introduced by Derrida and Gardner (1984) for the one-dimensional Anderson problem. For this problem, the critical incidence corresponds to band-edge localisation. Here, we recover some of the results obtained by Derrida and Gardner (1984) and Halperin (1965) using another approach: we renormalise directly the random matrix product appearing in the problem.

The new results contained in this paper can be summarised in three points.
(i) The problem is presented in optical terms; the results given in this paper should be experimentally observed (Bouchaud and Daoud 1985).
(ii) We discuss the behaviour of both the transmission and reflection coefficients (only the transmission coefficient is usually considered, even though the reflection problem has been solved by Sulem (1973) for normal incidence). The reflection coefficient is shown to be sample dependent. The scaling with respect to the noise is obtained through a close analysis of Furstenberg's theorem.
(iii) We show that this localisation problem (expressed as a 2×2 random matrix product) is formally equivalent to the Pomeau-Manneville intermittency with noise. The matrix involved is in fact the one which appeared in the study of intermittent dynamics in billiards, introduced by the authors (Bouchaud and Le Doussal 1985).

This paper is divided into three parts. In § 2, we introduce the formalism with which we describe the optical problem and recall some results on random matrix products. In § 3, we apply those results to the transmission and reflection coefficients of the system. We show that the dependence on the mean square σ is non-analytic $\left(\sigma^{1 / 3}\right)$. We provide other examples where the method is useful. In § 4, we explain the analogy between localisation and intermittency with noise. This analogy is used to describe the case θ_{0} close to θ_{c}.

2. Formalism. Random matrix products

2.1. A physical discussion

As is well known, the transmission coefficient as a function of the number of layers N changes, in the pure case ($\xi_{i} \equiv 0$), from an oscillatory behaviour to an exponential decrease when θ_{0} crosses the value θ_{c}. For $\theta_{0}=\theta_{c}$, the decay is algebraic, which means that for $\theta_{0} \rightarrow \theta_{c}^{+}$the penetration depth diverges. This is nothing but the divergence of the effective wavelength in the medium. An interesting aspect of this transition is the divergence of the partial wave amplitude for $\theta_{0}=\theta_{c}$-the finiteness of the physical fields is entirely due to interference and compensation between two infinite amplitudes.

A first simple approach to the disordered problem could be the following: consider the series of successive separating planes as independent 'mirrors', each one being characterised by a transmission coefficient t_{n} calculated as if only two semi-infinite media were present. In this approximation scheme, the transmission coefficient of the whole system is the product of the different t_{n} involved: multiple scatterings and interferences of light 'trapped' in a layer have been ignored. This leads to the following
behaviour:

$$
t \sim \exp (-\lambda(\sigma) N) \quad \text { for large } N
$$

with

$$
\begin{array}{ll}
\lambda(\sigma) \sim \sigma & \text { if } \theta_{0}<\theta_{c} \\
\lambda(\sigma) \sim \sigma^{1 / 2} & \text { for } \theta_{0}=\theta_{c}
\end{array}
$$

This 'mean field' calculation leads to the correct scaling for $\theta_{0}<\theta_{\mathrm{c}}$ but is not successful in the case $\theta_{0}=\theta_{c}$, for which $\lambda(\sigma)$ behaves rather like $\sigma^{1 / 3}$ as will be shown in $\S 3$. As usual in phase transition problems, the reason for this breakdown is simple: as the mean effective wavelength diverges for $\theta_{0}=\theta_{\mathrm{c}}$, it is not justified to consider that the successive planes are far apart. Let us finally mention that this 'mean field' approach is quite the analogue of the random phase model introduced by Anderson et al (1980).

2.2. Transfer matrices

We shall denote by E_{i}^{t} (resp. E_{i}^{r}) the electric field propagating in the $z>0$ (resp. $z<0$) direction in the i th layer. The polarisation of the incident plane wave is such that the electric field is perpendicular to the incidence plane (see figure 1).

Fresnel's equations allow us to write recurrence equations in the variables

$$
X_{i}=E_{i}^{\mathrm{t}}+E_{i}^{\mathrm{r}}, \quad Y_{i}=j\left(E_{i}^{\mathrm{t}}-E_{i}^{\mathrm{r}}\right) k_{i} l
$$

with

$$
\begin{aligned}
& j^{2}=-1, \\
& k_{i}^{2}=\bar{k}^{2}\left[\left(1-\left(n_{0} / \bar{n}\right)^{2} \sin ^{2} \theta_{0}\right)+2 \xi_{i}\right], \\
& \bar{k}=\bar{n} \omega / c .
\end{aligned}
$$

The recurrence relation reads:

$$
\binom{X_{i+1}}{Y_{i+1}}=Q_{i}\binom{X_{i}}{Y_{i}}
$$

with

$$
\begin{aligned}
& Q_{i}=\left[\begin{array}{cc}
\cos k_{i} l & \left(l k_{i}\right)^{-1} \sin k_{i} l \\
-l k_{i} \sin k_{i} l & \cos k_{i} l
\end{array}\right] \quad(i \geqslant 2) \\
& Q_{1}=\mathbb{1}
\end{aligned}
$$

We shall consider from now on the case $\theta_{0}=\theta_{c}$. (The case θ_{0} close to θ_{c} will be discussed in § 4.2.) Up to the first order in ξ, this leads to

$$
Q_{i}=\left[\begin{array}{cc}
1+\frac{1}{2} \xi_{i} & 1 \tag{2.1}\\
\xi_{i} & 1+\frac{1}{2} \xi_{i}
\end{array}\right]
$$

with a new $\xi_{i}=-2(\bar{k} l)^{2} \xi_{i}$.
The equations defining the (complex) transmission and reflection coefficients (t, r) thus read

$$
\begin{equation*}
\binom{t}{i k_{0} t}=\binom{N+1}{\prod_{i=1} Q_{i}}\binom{1+r}{i k_{0}(1-r)} . \tag{2.2}
\end{equation*}
$$

Every matrix Q_{i} (and thus their product) satisfies

$$
\begin{equation*}
\operatorname{det} Q_{i}=1 \tag{2.3}
\end{equation*}
$$

This property ensures that the electromagnetic energy is conserved, and it is straightforward to prove that, if Q_{i} is realt, (2.3) is equivalent to

$$
\begin{equation*}
|r|^{2}+|t|^{2}=1 \tag{2.4}
\end{equation*}
$$

For $\xi_{i}=0, Q_{i}$ takes the form $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ which is exactly the linear part of a two-dimensional intermittent mapping that we introduced to study the motion of a point particle in billiards between two perfectly reflecting circles close to contact (Bouchaud and Le Doussal 1985).

2.3. Product of random matrices. Furstenberg's theorem

Let $T_{N}=\Pi_{i=1}^{N+1} Q_{i}$. Furstenberg's theorem (Furstenberg 1963) states that the angle between $T_{N} \boldsymbol{u}$ and $T_{N} \boldsymbol{u}^{\prime}$ (where \boldsymbol{u} and \boldsymbol{u}^{\prime} are two arbitrary vectors) goes to zero exponentially with N :

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \left\langle T_{N} u, T_{N} u^{\prime}\right\rangle=-2 \lambda
$$

($\langle.$.$\rangle denotes a scalar product). \lambda$ is called the Lyapounov exponent of the matrix product. By applying this theorem to T_{N} and T_{N}^{-1} (which gives the same λ by virtue of equation (2.3)) and taking the shape of the Q_{i} into account, it is plausible (and experimentally confirmed) that every coefficient of T_{N} diverges according to the same law:

$$
\begin{align*}
& a_{N} \sim b_{N} \sim c_{N} \sim d_{N} \sim \mathrm{e}^{\lambda N}, \tag{2.5}\\
& T_{N}=\left[\begin{array}{ll}
a_{N} & b_{N} \\
c_{N} & d_{N}
\end{array}\right] \quad\left(a_{N}, b_{N}, c_{N}, d_{N}\right) \in \mathbb{R}^{4} . \tag{2.6}
\end{align*}
$$

T_{N} can be cast in diagonal form in \mathbb{R} : it can be written

$$
\left[\begin{array}{cc}
\alpha_{N} \mathrm{e}^{\lambda N} & 0 \\
0 & \alpha_{N}{ }^{-1} \mathrm{e}^{-\lambda N}
\end{array}\right]
$$

(with $\alpha_{N} \simeq \mathrm{O}(1)$) defining, as in dynamical systems, a stable and an unstable manifold. The direction of the stable manifold of T_{N} defines, in the plane, an angle θ_{N}, which satisfies

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\theta_{N}}{N}=\omega, \tag{2.7}
\end{equation*}
$$

called the rotation number of the product (see, for example, Ruelle 1985). From (2.2) and (2.6), we get

$$
\begin{equation*}
t=2\left[\left(a_{N}+d_{N}\right)+\mathrm{i}\left(c_{N} / k_{0} l-k_{0} l b_{N}\right)\right]^{-1} \sim \mathrm{e}^{-\lambda N} \tag{2.8}
\end{equation*}
$$

This exponential decrease of the transmission coefficient is nothing but another aspect of Anderson's localisation (in one dimension).

If we call $\varphi=1-r$, we also obtain, from (2.2):

$$
\begin{equation*}
\varphi=2 \frac{a_{N}+\mathrm{i} c_{N} / k_{0} l}{a_{N}+d_{N}+\mathrm{i}\left(c_{N} / k_{0} l-k_{0} l b_{N}\right)} . \tag{2.9}
\end{equation*}
$$

[^0]Condition (2.5) thus implies that φ reaches a limit φ^{*}-a priori different from zerowhen $N \rightarrow \infty$.

We shall see in the following that this limit is extremely well defined experimentally (which confirms hypothesis (2.5)), but is sample dependent; that is, φ^{*} is dependent on the particular realisation of the $\xi_{i}\left(\varphi^{*}\right.$ is not self-averaging).

Note that φ^{*} is zero when $\xi_{1} \equiv 0$, and that condition (2.4) imposes that

$$
\operatorname{Re} \varphi^{*}=\frac{1}{2}\left(\operatorname{Im} \varphi^{*}\right)^{2} \quad \text { when } \varphi^{*} \ll 1
$$

The structure of T_{N} can be further discussed: due to time reversal invariance, T_{N} can always be written, in the

$$
\binom{E_{i}^{t}}{E_{i}^{\ulcorner }}
$$

basis, in the form (Pichard 1984)

$$
T_{N}=\left[\begin{array}{cc}
\alpha & \beta \\
\beta^{*} & \alpha^{*}
\end{array}\right]
$$

which allows us to identify $\alpha=1 / t^{*}, \beta=-r^{*} / t^{*}$.

$$
\frac{1}{2|t|^{2}}\left[\begin{array}{cc}
t+t^{*}-\left(r^{*} t+r t^{*}\right) & \left(\mathrm{i} / k_{0} l\right)\left(t-t^{*}\right)+r t^{*}-r^{*} t \tag{2.10}\\
i k_{0} l\left(t-t^{*}\right)+\left(r t^{*}-r^{*} t\right) & \left(t+t^{*}\right)+\left(r^{*} t+r t^{*}\right)
\end{array}\right] .
$$

We now wish to show in a different way that

$$
\begin{equation*}
T_{N}=\mathrm{e}^{\lambda N} P_{N} \tag{2.11}
\end{equation*}
$$

where P_{N} is exponentially close to a projector $P_{N}^{2} \simeq P_{N}$.
The most general form of a 2×2 projector is

$$
P_{\gamma \delta}=\left[\begin{array}{cc}
\frac{1}{2}(1-\gamma) & \left(1-\gamma^{2}\right) / 2 \delta \tag{2.12}\\
\frac{1}{2} \delta & \frac{1}{2}(1-\gamma)
\end{array}\right] .
$$

We are thus led to the following identifications:

$$
\mathrm{e}^{\lambda N} \sim\left(t+t^{*}\right) /|t|^{2}=g
$$

which we factorise in (2.10),

$$
\gamma \simeq-\frac{r^{*} t+r t^{*}}{t+t^{*}}, \quad \delta=\mathrm{i}\left(k_{0} l\right) \frac{t-t^{*}+r t^{*}-r^{*} t}{t+t^{*}}
$$

so that

$$
g \frac{1-\gamma^{2}}{2 \delta}=\frac{1}{2 \mathrm{i} k_{0} l|t|^{2}} \frac{\left(t+t^{*}\right)^{2}-\left(r t^{*}+r^{*} t\right)^{2}}{t-t^{*}+r t^{*}-r^{*} t}
$$

In order to recover the corresponding term of T_{N}, one needs that $|r|^{2}=1$, thus $|t|^{2}=0$. This proves (2.11) since $|t|^{2} \simeq \mathrm{e}^{-2 \lambda N}$.

2.4. Conjecture on T_{N} extrapolating between λN small and large λN

From the last remark and the form of Q_{i} when $\xi_{i} \equiv 0$ we propose a conjecture concerning the structure of T_{N} very similar to the conjecture of Anderson et al (1980) on the
resistivity of a one-dimensional disordered array: $\rho=\mathrm{e}^{\alpha L}-1$, where L is the 'length' of the sample and α^{-1} is the localisation length. This expression leads to $\rho \simeq \alpha L$ when $\alpha L \ll 1$ and $\rho \simeq \mathrm{e}^{\alpha L}$ when $\alpha L \gg 1$.

Let us write $T_{N}(\xi)=T(N, \xi)$ in the form (throughout we will denote $\xi=\sqrt{\sigma}$)

$$
T_{N}(\xi)=\mu(N, \xi)\left(P^{\prime}(\xi)+N^{-1} G(\xi)+\mathrm{O}\left(N^{2}\right)\right)
$$

where $\mu(N, \xi)$ contains the 'large' N dependence and $G, P^{\prime}=O(1)$ with $P^{\prime}(0)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ (nilpotent matrix), $G(0)=\rrbracket$. Neglecting terms in ξ / N, the identification between $T(2 N, \xi)$ and $T(N, \xi)^{2}$ leads to

$$
P^{\prime}(\xi)^{2}=\lambda_{N}(\xi) P^{\prime}(\xi)
$$

with

$$
\lambda_{N}(0)=0, \quad \lambda_{N}=\mu(2 N, \xi) / \mu(N, \xi)^{2}-2 / N
$$

The natural conjecture on $T(N, \xi)$ thus reads:

$$
\begin{equation*}
T(N, \xi)=\left[1+P^{\prime}(\xi)\right]^{N} \quad \text { with } P^{\prime}(\xi)^{2}=\lambda(\xi) P^{\prime}(\xi) \tag{2.13}
\end{equation*}
$$

where $\lambda(\xi)$ is N dependent, which allows us to recover (Anderson et al 1980):

$$
\begin{array}{ll}
\text { for } \lambda(\xi) N \ll 1, & T_{N} \simeq \mathbb{J}+N P^{\prime}(\xi), \\
\text { for } \lambda(\xi) N \gg 1, & \tag{2.14b}\\
T_{N} \simeq\left(P^{\prime}(\xi) / \lambda(\xi)\right) \mathrm{e}^{N \lambda(\xi)}
\end{array}
$$

$\lambda(\xi)$ is thus the Lyapounov exponent and $P(\xi)=P^{\prime}(\xi) / \lambda(\xi)$ is a projector $\left(P^{2}=P\right)$ due to property (2.13). We thus recover (2.11). Let us nevertheless stress once more that $P(\xi)$ is still N dependent. $P(\xi)$ can be parametrised by $\left(\gamma_{N}, \delta_{N}\right)$ according to (2.12). The scaling behaviour of γ, δ will be studied in $\S 3$. In fact, (2.13) describes the limits $\lambda N \ll 1$ and $\lambda N \gg 1$ correctly, but must be taken with care if one wants to describe the crossover. The validity of (2.13) in this region should be compared with the random phase model of Anderson et al (1980), which has been recently discussed by Pichard (1985).

3. Renormalisation. Scaling for $\lambda(\xi)$ and $\varphi^{*}(\xi)$

3.1. Scaling laws

As in a previous paper (Bouchaud and Le Doussal 1985), where we renormalised the dynamics of a point particle between two circles, we introduce here the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 / 2\end{array}\right]$ which satisfies the renormalisation condition

$$
\begin{equation*}
A^{-1} Q^{2}(\xi=0) A=Q(\xi=0) \tag{3.1}
\end{equation*}
$$

If ξ_{i} and ξ_{i+1} are two (uncorrelated) Gaussian noises with variance σ, their sum is Gaussian with variance 2σ. We thus obtain

$$
\begin{equation*}
A^{-1} Q_{i}(\xi) Q_{i-1}(\xi) A \simeq Q_{i}(2 \sqrt{2} \xi) \tag{3.2}
\end{equation*}
$$

$T(N, \xi)$ can be transformed into

$$
\begin{equation*}
T(N, \xi)=A T\left(\frac{1}{2} N, 2 \sqrt{2} \xi\right) A^{-1} \tag{3.3}
\end{equation*}
$$

Taking the trace of this last equation, and using (2.14b), we obtain, for large N,

$$
\begin{equation*}
\lambda(\xi)=\frac{1}{2} \lambda(2 \sqrt{2} \xi) \quad \text { or } \quad \lambda(\xi) \sim \xi^{2 / 3} \tag{3.4}
\end{equation*}
$$

Figure 2 illustrates the physical meaning of equation (3.3): as usual in Kadanoff's renormalisation, the layers are paired together and the equivalent index of those pairs is determined. So if r^{\prime} and t^{\prime} are the coefficients relative to a system of N layers with index ($\bar{n}+2 \sqrt{2} \xi_{i}$) and r, t those of the 'decimated' system of $N / 2$ layers with index ($\bar{n}+\xi_{i}$), one has the renormalisation equations:

$$
\begin{align*}
& A^{-1}\binom{t^{\prime}}{i k_{0} l t^{\prime}}=T\left(\frac{N}{2}, \xi\right) A^{-1}\binom{1+r^{\prime}}{i k_{0} l\left(1-r^{\prime}\right)}, \\
& \binom{t}{i k_{0} l t}=T\left(\frac{N}{2}, \xi\right)\binom{1+r}{i k_{0} l(1-r)} . \tag{3.5}
\end{align*}
$$

Figure 2. The geometrical meaning of the renormalisation transformation $T(N, \xi) \rightarrow$ $T\left(\frac{1}{2} N, 2 \sqrt{2} \xi\right)$.

From (3.4) we obtain $N^{-1} \log t \sim \xi^{2 / 3}$, which is Derrida and Gardner's (1984) result, and is to be compared with the 'mean field' prediction of $\S 2.1$. Equations (3.5) together with the condition $\operatorname{det} T\left(\frac{1}{2} N, \xi\right)=1$ allow us to obtain

$$
\varphi(N, \xi)=\frac{1}{2} \varphi\left(\frac{1}{2} N, 2 \sqrt{2} \xi\right)
$$

Thus φ^{*} satisfies the same relation as λ. With the equation $\operatorname{Re} \varphi^{*}=\frac{1}{2}\left(\operatorname{Im} \varphi^{*}\right)^{2}$ we finally get

$$
\begin{equation*}
\varphi^{*} \simeq \mathrm{i} \alpha \xi^{2 / 3}+\frac{1}{2} \alpha^{2} \xi^{4 / 3} \tag{3.6}
\end{equation*}
$$

where α is a (sample-dependent) real number.
A more straightforward approach, making use of the conjecture developed in § 2.4, can be given. The consistency condition

$$
\lim _{\xi \rightarrow 0} \lambda(\xi) P(\xi)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],
$$

together with $\lambda(\xi) \sim \xi^{2 / 3}$, imposes that

$$
P(\xi)=\left[\begin{array}{cc}
\frac{1}{2}(1-\gamma) & \xi^{-2 / 3}(1-\gamma) / 2 \delta \\
\xi^{2 / 3} \delta / 2 & \frac{1}{2}(1+\gamma)
\end{array}\right]
$$

where δ, γ are bounded and sample dependent (and N dependent). It is then easy, using the explicit expression (2.9) for φ, to derive (3.6).

We finally formulate two remarks.
(1) If the noise is not Gaussian but of a ν-Levy type (ν is the largest number such that $\left\langle\xi^{\nu}\right\rangle<+\infty$, the exponent $\frac{2}{3}$ has to be transformed into $\nu /(\nu+1)$ ($\nu=2$ corresponds to the Gaussian case).
(2) The rotation number defined by (2.7) is easily seen to satisfy the same scaling equation as $\lambda(\xi)$. One thus has $\omega(\xi) \sim \xi^{2 / 3}$.

This rotation number is linked with the 'imaginary part' of the Lyapounov exponent of Derrida and Gardner (1984), which in turn gives the energy density of states in Anderson's model (see Thouless 1972).

3.2. Physical interpretation.

The transmission coefficient goes to zero exponentially: as we already said, this is the well known result of 1 D localisation. The localisation length is non-analytic in the noise: this is the consequence of the competition between an oscillatory and an exponentially decaying behaviour at criticality. The reflection coefficient r is not equal to 1 : for a given sample $\varphi=1-r$ converges towards a well defined limit when $N \rightarrow \infty$ (cf figure 3). But for a different realisation of the ξ_{1} (for a given σ), these limits are not the same (cf figure 3). Formula (3.6) must then be interpreted in the following way: one has to introduce a probability distribution p over the samples. It depends on φ^{*} and σ only through $\left(\operatorname{Im} \varphi^{*}\right) / \sigma^{1 / 3}$:

$$
\begin{equation*}
p\left(\varphi^{*}, \sigma\right)=\phi\left(\left(\operatorname{Im} \varphi^{*}\right) / \sigma^{1 / 3}\right) \tag{3.7}
\end{equation*}
$$

The fact that φ^{*} is not self-averaging (sample dependent) is easy to understand. As the amplitude of the beam decreases exponentially, the far-away layers are only weakly probed, and in fact only the actual realisation of ξ_{i} on the first few layers is important. This can be enlightened by the following 'toy model': let x_{i} be a random variable of variance σ. If one studies the following weighted sum, representing the 'superposition' of the contributions of each layer: $x=\Sigma_{k} x_{k} \mathrm{e}^{-\lambda k}$, it is easy to see that the distribution $p(x)$ is also a Gaussian (and not a δ) of variance $\sigma / 2 \lambda$ (for small λ). Since here $\lambda \sim \sigma^{1 / 3}$, this model provides a Gaussian probability distribution for $\operatorname{Im} \varphi^{*}$, of the

Figure 3. We show in this figure $\varphi=1-r$ as a function of the number of layers N. The two curves correspond to two different realisations of ξ_{i} with the same $\left\langle\xi^{2}\right\rangle$, showing the fact that φ reaches a well defined but sample-dependent limit. Note also (see § 4.2) the 'jumps' corresponding to chaotic bursts of the underlying intermittent mapping.
form (3.7). In fact ϕ is not exactly Gaussian and can be determined exactly (Sulem 1973). It is given in $\S 4$ and drawn in figure 5.

For normal incidence, the same theory can be developed (matrix renormalisation). The exponent $\frac{1}{3}$ must be replaced by 1 in the above formulae, and follows the prediction of the 'mean field' theory given in $\S 2.1$.

Let us finally mention that φ^{*} should be rather easily reached through interference between incident and reflected waves.

3.3. Other physical examples for which the method is useful

A certain number of physical problems can be described as mappings or differential equations involving the matrix $Q_{0}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. This matrix is interesting in two respects.
(i) As

$$
\left[\begin{array}{ll}
1 & 1 \tag{3.8}\\
x & 1
\end{array}\right]=\exp \left(x\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)
$$

the descriptions in terms of differential equations and iterated maps are equivalent (divergence of a 'length' scale). $x=0$ corresponds to an intermittency threshold (cf Bouchaud and Le Doussal 1985 and § 4.2); and equation (3.8) means that the process near this threshold is infinitely divisible (this is not the case, for instance, near Feigenbaum's fixed point).
(ii) The product of matrices of type (3.8) -with x possibly random—leads to scaling laws characterised by exponents which can be calculated using property (3.1.).

We thus give a few physical examples for which scaling laws obtained through (3.1) are identical.
(a) Scaling laws (as functions of geometrical parameters) on Lyapounov exponents in different types of billiards (diamond (Bouchaud and Le Doussal 1985, Benettin 1984); stadion (Benettin 1984)).
(b) Calculation of the Lyapounov exponent λ (Kolmogorov entropy) associated with the motion of a particle in an inhomogeneous magnetic field (Rechester et al 1979). $\lambda \sim b^{2 / 3}$ where b is a measure of the field's inhomogeneity. (In this case, the perturbation of Q_{0} is a different, but the 'renormalisation' transformation is the same as in case (a).)
(c) NMR spectrum of a particle with spin diffusing on a line according to a Brownian motion in a linearly varying magnetic field. The problem can be written in the following way:

$$
\begin{equation*}
x_{i+1}=x_{i}+D^{1 / 2} \xi_{i}, \quad \theta_{i+1}=\theta+g b x_{i} \tag{3.9}
\end{equation*}
$$

where x_{i} is the position, ξ_{i} a Gaussian process, D the diffusion coefficient, θ_{i} is the angle of a transverse component of the spin and b the field gradient.

The frequency distribution (NMR spectrum) is $p(\omega)$ with

$$
\omega=\lim _{N \rightarrow \infty} \frac{\theta_{N}}{N}
$$

The above formalism allows us to obtain the width of $p(\omega)$ as

$$
\left\langle\omega^{2}\right\rangle^{1 / 2} \sim D^{1 / 3}(g b)^{2 / 3}
$$

which is the classical result (Abragam 1960).

4. Link between localisation and intermittency

4.1. Intermittency: main features

Pomeau-Manneville's intermittency (Pomeau and Manneville 1980a, b) schematically models the dynamics of a variable whose behaviour is characterised by a succession of 'laminar', quasi-periodic eras and chaotic bursts, as encountered in the transition to turbulence. The mapping describing the dynamics of some Poincare section of the flow has, in the laminar region, the following generic form:

$$
x_{i+1}=f_{\mu}\left(x_{i}\right)=\mu+x_{i}-x_{i}^{2}+\ldots, \quad \mu \text { small }
$$

(see figure 4). When x_{i} leaves the 'channel', a chaotic burst appears until non-linear terms reinject the 'particle' in the channel. This mapping has been fully discussed (Pomeau and Manneville 1980a, b, Hirsh et al 1982) in the deterministic case ($\mu=$ constant) as well as in the probabilistic case (Eckmann et al 1981),

$$
\begin{equation*}
f_{\mu, \xi}=\mu+\xi_{i}+x_{i}-x_{i}^{2}+\ldots, \tag{4.1}
\end{equation*}
$$

where ξ_{i} is a random 'noise'.

Figure 4. An archetype of intermittent mapping. Bold curves, the function $f_{\mu}=2+\mu+1 / x$ at threshold ($\mu=0$). Dotted curve, the effect of a positive (or negative) noise ξ and the appearance of a transient fixed point (for $\xi>0$).

Two interesting quantities can be defined in this problem.
(i) The laminar time T_{L}, i.e. the number of successive iterations the particle spends in the channel.
(ii) The Lyapounov exponent λ, defined for any mapping as

$$
\begin{equation*}
\lambda=\lim _{N \rightarrow \infty} N^{-1} \log \left|\partial f^{N} / \partial x\right| . \tag{4.2}
\end{equation*}
$$

Assuming an ergodic property ${ }^{\dagger}$, those two quantities can be expressed through the asymptotic measure of the problem, $p_{\infty}^{\mu, \xi}$, as

$$
\begin{equation*}
T_{\mathrm{L}}^{-1} \sim \int_{-\infty}^{-1} p_{\infty}^{\mu, \xi}(x) \mathrm{d} x \tag{4.3a}
\end{equation*}
$$

[^1]\[

$$
\begin{equation*}
\lambda=\int_{-\infty}^{+\infty} p_{\infty}^{\mu, \xi}(x) \log \left|f^{\prime}(x)\right| \mathrm{d} x \approx \int x p_{\infty}^{\mu, \xi}(x) \mathrm{d} x . \tag{4.3b}
\end{equation*}
$$

\]

Eckmann et al (1981) showed that, for small ξ and μ,
$p_{\infty}^{\mu, \xi}(x)=C \xi^{-2 / 3} \exp \left[-2\left(\frac{t^{3}}{3}-\frac{\mu}{\xi^{4 / 3}} t\right)\right] \int_{-\infty}^{t} \mathrm{~d} t^{\prime} \exp \left[2\left(\frac{1}{3} t^{\prime 3}-\frac{\mu}{\xi^{4 / 3}} t^{\prime}\right)\right]$
with $x=\xi^{2 / 3} t$, which gives, for $\xi=0$, the well known result

$$
T_{\mathrm{L}} \sim \mu^{-1 / 2} \quad(\mu>0)
$$

and, for $\mu=0, T_{\mathrm{L}} \sim \xi^{-2 / 3}$.
T_{L} is thus expressed as $T_{\mathrm{L}}(\xi, \mu)=\mu^{-1 / 2} F\left(\xi^{4 / 3} / \mu\right)$ where F is a universal function for one-dimensional intermittency with noise (Eckmann et al 1981).

4.2. Localisation

In this section we consider the one-dimensional Schrödinger equation in a random potential

$$
\begin{equation*}
\psi_{i+1}-2 \psi_{i}+\psi_{i-1}=\left(E-V_{i}\right) \psi_{i} . \tag{4.5}
\end{equation*}
$$

As explicitly shown in the appendix, this is equivalent to studying the product of random matrices (2.1). Introducing $R_{i+1}=\psi_{i+1} / \psi_{i}$, we have

$$
\begin{equation*}
R_{i+1}=2+\mu+\xi_{i}-1 / R_{i} \quad \text { with } \quad \mu \equiv-E, \xi_{i} \equiv V_{i} . \dagger \tag{4.6}
\end{equation*}
$$

For $\xi_{i}=0$, the function $f(x)=2-x^{-1}$ has exactly the shape of an intermittent PomeauManneville function (figure 4) including the reinjection process (see $\S 4.3$). When R_{i} is close to $1\left(R_{i}=1+x_{i}, x \ll 1\right)$, one has

$$
\begin{equation*}
x_{i+1}=\xi_{i}+x_{i}-x_{i}^{2}+\mu+\ldots \tag{4.7}
\end{equation*}
$$

which must be compared with (4.1).
The localisation length of the problem is defined through

$$
\begin{equation*}
\lambda=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \log \left|R_{i}\right| . \tag{4.8}
\end{equation*}
$$

Introducing the distribution $p(R)$ of the variable R_{i} verifying a Dyson (1953) relation,

$$
\begin{equation*}
p(R)=\int \mathrm{d} \xi p(\xi) \int \mathrm{d} R^{\prime} \delta\left(R-2-\xi-\mu+1 / R^{\prime}\right) p\left(R^{\prime}\right) \tag{4.9}
\end{equation*}
$$

($p(\xi)$ is the noise distribution), we obtain the analogue, for the mapping (4.6), of the asymptotic measure $p_{\infty}^{\mu, \xi}$ defined in \S 4.1. This probability distribution $p(R)$ allows us to compute the inverse localisation length (Derrida and Gardner 1984) as
$\lambda=\frac{\int p(R) \log R \mathrm{~d} R}{\int p(R) \mathrm{d} R}=\frac{1}{2} \xi^{2 / 3} \frac{\int_{0}^{\infty} \mathrm{d} t t^{1 / 2} \exp \left(-\frac{1}{6} t^{3}+2 \mu t / \xi^{4 / 3}\right)}{\int_{0}^{\infty} \mathrm{d} t t^{-1 / 2} \exp \left(-\frac{1}{6} t^{3}+2 \mu t / \xi^{4 / 3}\right)}$.
In the continuous limit one can show (Sulem 1973) that for small φ^{*},

$$
\operatorname{Im} \varphi^{*}=2 \dot{\psi} / \psi\left(=2 x_{N}\right)
$$

† In the optical problem $\mu \sim \theta_{c}-\theta$.

This is due to the fact that for a complex initial R_{0}, R_{N} obtained through (4.6) is real when $N \rightarrow \infty$. We can thus further specify the distribution law of $\operatorname{Im} \varphi^{*}$: it is simply given by the distribution of $x: p_{\infty}^{\mu, \xi}(x)$ written in (4.4). This is consistent with (3.7) obtained through scaling, as $p_{\infty}^{\mu \xi}(x)$ only depends on $t=x / \xi^{2 / 3}$. In figure 5 we give a sketch of this function for $\mu=0$.

Figure 5. The distribution law of $p\left(\varphi^{*}\right)$ as a function of the scaled variable ($\operatorname{Im} \varphi^{*}$)/ $\xi^{2 / 3}$.
Thus, we point out that, in order to study a localisation problem, one is naturally led to introduce an intermittent mapping of the form (4.7). There is a close correspondence between the interesting quantities relevant in dynamical system analysis and the physically important observables in localisation. Indeed, the inverse localisation length defined by (4.8) is exactly minus one half the Lyapounov exponent λ^{\prime} of the intermittent mapping (4.6) given by ($4.3 b$) (see $\S 4.3$ below); in the same way, the imaginary part of $\lambda \dagger$, defined in Derrida and Gardner (1984), counts the number of sign changes of R_{i}-that is, the number of chaotic bursts in the intermittent problem. As this number is simply the inverse of the 'laminar time' usually considered, we have

$$
1 / T_{\mathrm{L}} \sim \operatorname{Im} \lambda
$$

Thus, according to Derrida and Gardner (1984), we have

$$
\begin{equation*}
T_{\mathrm{L}} \sim \xi^{-2 / 3} \int_{0}^{\infty} t^{-1 / 2} \mathrm{~d} t \exp \left(-\frac{t^{3}}{6}+\frac{2 \mu t}{\xi^{4 / 3}}\right) \tag{4.11}
\end{equation*}
$$

which is nothing but the formula (4.1) appearing in Eckmann et al (1981) for the laminar time of a general one-dimensional intermittent mapping with noise.

This analogy allows us in particular:
(1) to interpret the 'jumps' in the curve $\operatorname{Im} \varphi(N)$ (figure 3) as chaotic bursts. These bursts also correspond to moments where the coefficients c_{N} of the matrix T_{N} changes sign;

[^2](2) to predict the scaling behaviours for θ near the critical angle θ_{c} by writing everywhere
$$
\mu \sim \theta_{c}-\theta .
$$

4.3. The limit $\xi \rightarrow 0$

The following point needs clarification: formula (4.10) leads, in the limit $\xi \rightarrow 0$, to:
(i) $\lambda^{\prime}=0$ for $\mu<0$ (no fixed point for the mapping (4.6));
(ii) $\lambda^{\prime}=-\sqrt{\mu}$ for $\mu>0$ (one stable fixed point $x_{0} \sim \sqrt{\mu}$).

Nevertheless, we are accustomed to think that the case $\mu<0$ (no fixed point) is the 'chaotic phase'-its stochasticity being characterised by a positive Lyapounov exponent growing as $\sqrt{-\mu}$. A closer analysis shows that this positive exponent is entirely due to the chaotic reinjection processes (bursts) giving a contribution to λ^{\prime} of order $\lambda^{\prime} \sim$ number of chaotic bursts $\sim 1 / T_{\mathrm{L}} \sim \sqrt{-\mu}$ (following (4.11)). The channel contribution to λ is strictly zero. The reinjection process contained in the $1 / R$ part of mapping (4.6) is not 'stochastic' enough; this is linked with the fact that (4.6) without noise is not ergodic (it is in fact periodic whenever $\sqrt{-\mu}$ is rational). Without noise, the asymptotic measure $p(R)$ loses its meaning.

On the contrary, when there exists a fixed point, λ^{\prime} is negative as it should be (contraction of phase space). When the noise comes in, formula (4.10) also leads to a negative λ^{\prime}; this is because only the existence (even temporary-when $\xi_{i}+\mu>0$) of a fixed point contributes (negatively) to λ^{\prime} : the channel contribution is zero and the bursts contribution cannot be calculated with the local analysis (around $R=1$) developed by Derrida and Gardner (1984) and Eckmann et al (1981). It may be that, for another mapping, a sufficiently chaotic reinjection and the transient fixed point compete in the determination of λ^{\prime}.

5. Conclusion

In this paper, we showed that the reflection coefficient r of a set of N random layers has a well defined (but sample-dependent) limit when $N \rightarrow \infty$. This coefficient is not equal to one; instead, the distribution law of $\varphi=1-r$ depends only on $(\operatorname{Im} \varphi) / \xi^{2 / 3}$ (where ξ^{2} is the noise variance) if the incidence angle is the mean total reflection angle. This scaling is quite easily obtained with the help of a close analysis of the expected asymptotic form of the random matrix product ($\$ 2.4$), and the distribution of $\operatorname{Im} \varphi$ can be specified entirely.

We also unveiled a strong link between intermittency and localisation, hoping that certain physical concepts important in localisation may prove useful in fluid mechanics. Let us note that in fact intermittency follows from a wave equation $\Delta \psi=-E \psi$ near $E=0$, or, seen differently, when a squared mass vanishes.

Intermittency might thus be deeply connected to second-order phase transitions; the problem dealt with in this paper is in fact, in a way, such a phase transition, where the order parameter is the localisation length and the noise an external field.

Acknowledgments

We thank E Bouchaud for her valuable help and discussions. 'We also thank Y Pomeau and A Georges for reading the manuscript.

Appendix

The Schrödinger equation (4.5) can be written

$$
\binom{\psi_{i+1}-\psi_{i}}{\frac{1}{2}\left(\psi_{i+1}+\psi_{i}\right)}=\left[\begin{array}{cc}
1+\frac{1}{2} \xi_{i} & \xi_{i} \\
1+\frac{1}{4} \xi_{i} & 1+\frac{1}{2} \xi_{i}
\end{array}\right]\binom{\psi_{i}-\psi_{i-1}}{\frac{1}{2}\left(\psi_{i}+\psi_{i-1}\right)}
$$

with $\xi_{i} \equiv V_{i}-E$. This is very close to the form (2.1) for Q_{i} and the difference is clearly irrelevant for small ξ_{i}.

References

Abragam A 1960 Principles of nuclear magnetism (Oxford: Clarendon)
Akkermans R and Maynard R 1984 J. Physique 451549
Anderson P, Thouless D, Abrahams E and Fisher D 1980 Phys. Rev. B 223529
Baluni Y and Willemsen J 1984 Preprint Univ. Michigan TH 84-15
Benettin G 1984 Physica D 13211
Bouchaud E and Daoud M 1985 submitted to J. Physique
Bouchaud J P and Le Doussal P 1985 submitted to Physica D
Derrida B and Gardner E 1984 J. Physique 451283
Dyson F 1953 Phys. Rev. 921221
Eckmann J P, Thomas L and Wittwer P 1981 J. Phys. A: Math. Gen. 143153
Furstenberg H 1963 Trans. Am. Math. Soc. 108377
Halperin B I 1965 Phys. Rev. 139 A104
Hirsh J, Nauenberg M and Scalapino D 1983 Phys. Lett. 87A 391
Pichard J L 1984 Thèse Paris-Sud
_- 1985 Saclay preprint
Pomeau Y and Manneville P 1980a Commun. Math. Phys. 74189
- 1980b Physica D 219
Rechester A, Rosenbluth M and White R 1979 Phys. Rev. Lett. 421247
Ruelle D 1985 Ann. Inst. H Poincaré 42109
Sulem P L 1973 Physica 70190
Thouless D 1972 J. Phys. C: Solid State Phys. 571

[^0]: \dagger This is not the case when absorption is taken into account.

[^1]: \dagger A property which may not be true of $\xi_{i} \equiv 0$ (see discussion in §4.3).

[^2]: \dagger This imaginary part is also the rotation number of the flow (2.7).

