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Abstract. We show that the reflection coefficient r of a succession of N random optical 
layers has a well defined, but sample-dependent, limit when N +CO. The probability 
distribution of r at total reflection is found to depend only on (Im r ) / t 2 ”  where t2 is the 
noise variance. The analytical expressions appearing in this localisation problem are found 
to be the same as the universal functions describing intermittency with noise. 

1. Introduction 

We wish to discuss the following physical problem: consider a succession of N layers 
such that the optical index of the ith layer is of the form n, = i i( 1 + &) where 6, is a 
(small) random variable such that (&) = 0. 

A light beam, sent from a medium with an optical index no larger than ii, falls on 
the ‘one-dimensional random medium’ obtained by piling together N layers of thickness 
1 (figure 1). 

An interesting situation occurs when the incidence angle reaches the ‘average critical 
angle’ defined by 

no sin Bc = ii. 

Schematically, when 6, is positive the light beam is transmitted, while it is reflected 
when 6, is negative. What happens ‘on average’? What can be said about the trans- 
mission and reflection coefficients as functions of the noise variance (& = u? 

Figure 1. The system considered and the definition of the notation introduced in the text. 
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A problem of this kind has been considered for acoustic waves in a random-layered 
medium (Baluni and Willemsen 1984), but for a normal incidence, and only the 
frequency dependence of the transmission coefficient has been determined. The chain 
of random impedance studied by Akkermans and Maynard (1984) is formally equivalent 
to our problem but the ‘critical incidence’ (corresponding to resonance, LCw2 = 1, but 
without dissipation--R = 0) has not been investigated. The problem we are interested 
in can also be cast in the form introduced by Derrida and Gardner (1984) for the 
one-dimensional Anderson problem. For this problem, the critical incidence corre- 
sponds to band-edge localisation. Here, we recover some of the results obtained by 
Derrida and Gardner (1984) and Halperin (1965) using another approach: we renor- 
malise directly the random matrix product appearing in the problem. 

The new results contained in this paper can be summarised in three points. 
(i) The problem is presented in optical terms; the results given in this paper should 

be experimentally observed (Bouchaud and Daoud 1985). 
(ii) We discuss the behaviour of both the transmission and reflection coefficients 

(only the transmission coefficient is usually considered, even though the reflection 
problem has been solved by Sulem (1973) for normal incidence). The reflection 
coefficient is shown to be sample dependent. The scaling with respect to the noise is 
obtained through a close analysis of Furstenberg’s theorem. 

(iii) We show that this localisatiora problem (expressed as a 2 x 2 random matrix 
product) is formally equivalent to the Pomeau-Manneville intermittency with noise. 
The matrix involved is in fact the one which appeared in the study of intermittent 
dynamics in billiards, introduced by the authors (Bouchaud and Le Doussal 1985). 

This paper is divided into three parts. In 0 2, we introduce the formalism with 
which we describe the optical problem and recall some results on random matrix 
products. In 0 3, we apply those results to the transmission and reflection coefficients 
of the system. We show that the dependence on the mean square u is non-analytic 
( u ’ ’ ~ ) .  We provide other examples where the method is useful. In § 4, we explain the 
analogy between localisation and intermittency with noise. This analogy is used to 
describe the case eo close to eC. 

2. Formalism. Random matrix products 

2.1. A physical discussion 

As is well known, the transmission coefficient as a function of the number of layers 
N changes, in the pure case (.$ = O ) ,  from an oscillatory behaviour to an exponential 
decrease when Bo crosses the value 8,. For Bo = Oc,  the decay is algebraic, which means 
that for eo+ 0: the penetration depth diverges. This is nothing but the divergence of 
the effective wavelength in the medium. An interesting aspect of this transition is the 
divergence of the partial wave amplitude for B o =  @,-the finiteness of the physical 
fields is entirely due to interference and compensation between two infinite amplitudes. 

A first simple approach to the disordered problem could be the following: consider 
the series of successive separating planes as independent ‘mirrors’, each one being 
characterised by a transmission coefficient t,  calculated as if only two semi-infinite 
media were present. In this approximation scheme, the transmission coefficient of the 
whole system is the product of the different t ,  involved: multiple scatterings and 
interferences of light ‘trapped’ in a layer have been ignored. This leads to the following 
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behaviour: 

t-exp ( - A ( u ) N )  for large N 

with 

A(m) - U if eo < e,, 
A ( U) - U’’* for eo= e,. 

This ‘mean field’ calculation leads to the correct scaling for Bo < 8, but is not successful 
in the case Bo= e,, for which A(u) behaves rather like as will be shown in § 3. 
As usual in phase transition problems, the reason for this breakdown is simple: as the 
mean effective wavelength diverges for Bo = e,, it is not justified to consider that the 
successive planes are far apart. Let us finally mention that this ‘mean field’ approach 
is quite the analogue of the random phase model introduced by Anderson et a1 (1980). 

2.2. Transfer matrices 

We shall denote by E :  (resp. E:) the electric field propagating in the z > 0 (resp. z < 0) 
direction in the ith layer. The polarisation of the incident plane wave is such that the 
electric field is perpendicular to the incidence plane (see figure 1). 

Fresnel’s equations allow us to write recurrence equations in the variables 

X i = E : + E f ,  = j (  E :  - E : )  kil, 
with 

k f  = R[ (1 - (no/ ii)’ sin2 eo) + 263, 

E =  i iwlc.  

The recurrence relation reads: 

with 

( i s 2 ) ,  1 cos kil ( l k i )  -’ sin kil 
cos kil Q i = [  - lki sin kil 

Q1 =U. 
We shall consider from now on the case eo= Bc. (The case eo close to 0, will be 
discussed in § 4.2.) Up to the first order in 6, this leads to 

with a new ti = - 2( El)’&. 

thus read 
The equations defining the (complex) transmission and reflection coefficients ( t, r )  
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Every matrix QI (and thus their product) satisfies 

det Q1 = 1. (2.3) 

This property ensures that the electromagnetic energy is conserved, and it is straightfor- 
ward to prove that, if Qt is real?, (2.3) is equivalent to 

lr/2+lt12= 1. (2.4) 

For 6, = 0, QI takes the form [A :] which is exactly the linear part of a two-dimensional 
intermittent mapping that we introduced to study the motion of a point particle in 
billiards between two perfectly reflecting circles close to contact (Bouchaud and Le 
Doussal 1985). 

2.3. Product of random matrices. Furstenberg s theorem 

Let TN = IIfi:' Qi. Furstenberg's theorem (Furstenberg 1963) states that the angle 
between TNu and T N u '  (where U and U '  are two arbitrary vectors) goes to zero 
exponentially with N :  

1 
lim -log( T N u ,  TNu') = - 2 A  
N - a :  N 

((. . .) denotes a scalar product). A is called the Lyapounov exponent of the matrix 
product. By applying this theorem to TN and T&' (which gives the same A by virtue 
of equation (2.3)) and taking the shape of the Q1 into account, it is plausible (and 
experimentally confirmed) that every coefficient of TN diverges according to the same 
law: 

TN can be cast in diagonal form in R: it can be written 

(with aN = O( 1) )  defining, as in dynamical systems, a stable and an unstable manifold. 
The direction of the stable manifold of TN defines, in the plane, an angle ON, which 
satisfies 

ON lim - = U, 
N - a  N (2.7) 

called the rotation number of the product (see, for example, Ruelle 1985). From (2.2) 
and (2.6), we get 

t = 2 [ ( a ~ + d ~ ) + i ( C ~ / k o l -  kolb~)]-'-e-". (2.8) 
This exponential decrease of the transmission coefficient is nothing but another aspect 
of Anderson's localisation (in one dimension). 

If we call cp = 1 - r, we also obtain, from (2.2): 

U N  + i C N /  kol 
( p = 2  (2.9) aN + dN + i( cN/ kol - kolbN)' 

i This is not the case when absorption is taken into account. 
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Condition (2.5) thus implies that cp reaches a limit q*-a  priori different from zero- 
when N+a. 

We shall see in the following that this limit is extremely well defined experimentally 
(which confirms hypothesis (2.5)), but is sample dependent; that is, p* is dependent 
on the particular realisation of the 6, (p* is not self-averaging). 

Note that cp* is zero when 5, = 0, and that condition (2.4) imposes that 

Re cp* = f (  Im cp*)' when p* << 1. 

The structure of T,v can be further discussed: due to time reversal invariance, T,v can 
always be written, in the 

basis, in the form (Pichard 1984) 

which allows us to identify (Y = l / t * ,  /3 = - r * / t * .  
In the ('2) basis, this implies that TN is equal to 

(2.10) 
t 4 t* - ( r * t +  rt*) 

ikol( t - t * )  + (r t*  - r * t )  
( i /ko / ) (  t - t * )  + rt* - r*t 

( t +  t * )  + ( r * t  t rt*)  

We now wish to show in a different way that 

TN = eA'vP,N (2.1 1) 

where P,v is exponentially close to a projector P', = PN. 
The most general form of a 2 x 2 projector is 

(2.12) 

We are thus led to the following identifications: 

e h N  - ( t  + t*)/lt12 = g 

which we factorise in (2.10), 

r*t + rt* 
Y'-- t + t *  ' 

t - t * +  r t*-  r* t  
t +  t* 

8 = i( kol) , 

so that 

1 - y 2  1 ( t  + t * ) 2 -  ( r t * +  r*t)' 
g 2 6 - 2 i k , l l r l z  t - t * + r t * - r * t  ' 

- 

In order to recover the corresponding term of TN, one needs that lr12 = 1, thus 1 t i2  = 0. 
This proves (2.11) since / f /2=e-ZAN.  

2.4. Conjecture on TN extrapolating between A N  small and large A N  

From the last remark and the form of Q, when ti = 0 we propose a conjecture concerning 
the structure of TN very similar to the conjecture of Anderson et a1 (1980) on the 
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resistivity of a one-dimensional disordered array: p = eaL 7 1, where L is the ‘length’ 
of the sample and a-’ is the localisation length. This expression leads to p = CUL when 
CULK 1 and p = eaL when aL >> 1. 

Let us write TN(5) = T ( N ,  5) in the form (throughout we will denote 5=&) 
T N ( 0  = p(N,  5 ) ( P ’ ( 5 ) +  N - ’ G ( 5 ) + O ( N 2 ) )  

where p (  N, 5) contains the ‘large’ N dependence and G, PI= O(1) with P’(0) = [ E  A] 
(nilpotent matrix), G(0) = 1. Neglecting terms in 6/  N, the identification between 
T(2N, 5) and T ( N ,  5)2 leads to 

P ’ ( 0 2  = A N ( O P ’ ( 5 )  
with 

AN (0) = 0, A N  = p ( 2 N ,  &) /p (N,  5)’-2/N. 

The natural conjecture on T ( N ,  5) thus reads: 

T ( N ,  5) = [I+ P’(5)IN with P’(t)’= A ( f ) P ‘ ( t ) ,  (2.13) 

where A([) is N dependent, which allows us to recover (Anderson et a1 1980): 

for A( t )N<< 1, T N  1 + NP’( t ) ,  ( 2 . 1 4 ~ )  

for A(5)N >> 1, T N  = ( P ’ ( ( ) / A ( ( ) )  eNA(‘). (2.14b) 

A (5) is thus the Lyapounov exponent and P( 5) = P’( 5)/ A (5) is a projector ( P 2  = P )  
due to property (2.13). We thus recover (2.11). Let us nevertheless stress once more 
that P ( 5 )  is still N dependent. P ( 5 )  can be parametrised by (y,, 6,) according to 
(2.12). The scaling behaviour of y, S will be studied in 0 3. In fact, (2.13) describes 
the limits AN << 1 and AN >> 1 correctly, but must be taken with care if one wants to 
describe the crossover. The validity of (2.13) in this region should be compared with 
the random phase model of Anderson et a1 (1980), which has been recently discussed 
by Pichard (1985). 

3. Renormalisation. Scaling for A(S)  and cp*(S) 

3.1. Scaling laws 

As in a previous paper (Bouchaud and Le Doussal 1985), where we renormalised the 
dynamics of a point particle between two circles, we introduce here the matrix A = [A 
which satisfies the renormalisation condition 

A-’Q’( 5 = O)A = ~ ( 5  = 0). (3.1) 
If 
Gaussian with variance 2u. We thus obtain 

and 6,+’ are two (uncorrelated) Gaussian noises with variance a, their sum is 

A-’ Q,(O Qt-i(OA = 91 (2fi5). (3.2) 
T ( N ,  6 )  can be transformed into 

T ( N ,  6 )  = AT(;N, 2 a 5 ) A - I .  (3.3) 
Taking the trace of this last equation, and using (2.146), we obtain, for large N, 

A ( 5 )  =$A(2d26) or A (5) - 52‘3. (3.4) 



Intermittency in random optical layers at total reflection 803 

Figure 2 illustrates the physical meaning of equation (3.3): as usual in Kadanoff’s 
renormalisation, the layers are paired together and the equivalent index of those pairs 
is determined. So if r’ and t’ are the coefficients relative to a system of N layers with 
index ( i i  + 2J25,) and r, t those of the ‘decimated’ system of N / 2  layers with index 
( i i  + ti), one has the renormalisation equations: 

1 1 

I i n,=n11+2!h,) AOA-‘ 
I 
- N I 2  I 

Figure 2. The geometrical meaning of the renormalisation transformation T (  N , t )  + 
T ( W ,  2ao. 

From (3.4) we obtain N-’  Log t - 52/3, which is Demda and Gardner’s (1984) result, 
and is to be compared with the ‘mean field’ prediction of § 2.1. Equations (3.5) together 
with the condition det T ( i N ,  5) = 1 allow us to obtain 

cP(N, 5) = M f N ,  2 J z o .  
Thus q* satisfies the same relation as A. With the equation Re ~ * = f ( I m  ( P * ) ~  we 
finally get 

(3.6) cP* ia52/3 + i a 2 5 4 / 3  

where a is a (sample-dependent) real number. 

can be given. The consistency condition 
A more straightforward approach, making use of the conjecture developed in 0 2.4, 

together with A (5) - t2l3, imposes that 

where 6, y are bounded and sample dependent (and N dependent). It is then easy, 
using the explicit expression (2.9) for (9, to derive (3.6). 

We finally formulate two remarks. 
( 1 )  If the noise is not Gaussian but of a v-Levy type ( v is the largest number such 

that (5”) < +CO, the exponent 3 has to be transformed into U/( v + 1 )  ( v  = 2 corresponds 
to the Gaussian case). 
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(2)  The rotation number defined by (2.7) is easily seen to satisfy the same scaling 
equation as A ( & ) .  One thus has w ( & ) - & 2 i 3 .  

This rotation number is linked with the ‘imaginary part’ of the Lyapounov exponent 
of Derrida and  Gardner (1984), which in turn gives the energy density of states in 
Anderson’s model (see Thouless 1972). 

3.2. Physical interpretaiion. 

The transmission coefficient goes to zero exponentially: as we already said, this is the 
well known result of I D  localisation. The localisation length is non-analytic in the 
noise: this is the consequence of the competition between an  oscillatory and an  
exponentially decaying behaviour at criticality. The reflection coefficient r is not equal 
to 1: for a given sample cp = 1 - r converges towards a well defined limit when N -+ 00 

(cf figure 3). But for a different realisation of the (for a given a), these limits are 
not the same (cf figure 3). Formula (3.6) must then be interpreted in the following 
way: one has to introduce a probability distribution p over the samples. It depends 
on cp* and a only through (Im cp*)/a1’3: 

(3.7) 

The fact that ‘p* is not self-averaging (sample dependent) is easy to understand. As 
the amplitude of the beam decreases exponentially, the far-away !ayers are only weakly 
probed, and  in fact only the actual realisation of ti on the first few layers is important. 
This can be enlightened by the following ‘toy model’: let x, be a random variable of 
variance a. If one studies the following weighted sum, representing the ‘superposition’ 
of the contributions of each layer: x = X k  xk e-”, it is easy to see that the distribution 
p ( x )  is also a Gaussian (and not a 6 )  of variance a/2A (for small A). Since here 
A - this model provides a Gaussian probability distribution for Im cp*, of the 

P ( ‘ F * ,  a) = 4 ( ( I m  c p * ) / ~ ” ~ ) .  

. .  

. .  . .  
. .  

N 

Figure 3. We show in this figure cp = 1 - r as a function of the number of layers N. The 
two curves correspond to two different realisations of 5, with the same (t2), showing the 
fact that cp reaches a well defined but sample-dependent limit. Note also (see $4.2) the 
‘jumps’ corresponding to chaotic bursts of the underlying intermittent mapping. 



Intermittency in random optical layers at total reflection 805 

form (3.7). In fact C#J is not exactly Gaussian and can be determined exactly (Sulem 
1973). It is given in 0 4 and drawn in figure 5. 

For normal incidence, the same theory can be developed (matrix renormalisation). 
The exponent f must be replaced by 1 in the above formulae, and follows the prediction 
of the ‘mean field’ theory given in § 2.1. 

Let us finally mention that cp* should be rather easily reached through interference 
between incident and reflected waves. 

3.3. Other physical examples for which the method is useful 

A certain number of physical problems can be described as mappings or differential 
equations involving the matrix Qo = [A :I. This matrix is interesting in two respects. 

(i)  As 

the descriptions in terms of differential equations and iterated maps are equivalent 
(divergence of a ‘length’ scale). x = 0 corresponds to an intermittency threshold (cf 
Bouchaud and Le Doussal 1985 and § 4.2); and equation (3.8) means that the process 
near this threshold is infinitely divisible (this is not the case, for instance, near Feigen- 
baum’s fixed point). 

(ii) The product of matrices of type (3.8)-with x possibly random-leads to scaling 
laws characterised by exponents which can be calculated using property (3.1 .). 

We thus give a few physical examples for which scaling laws obtained through 
(3.1) are identical. 

(a) Scaling laws (as functions of geometrical parameters) on Lyapounov exponents 
in different types of billiards (diamond (Bouchaud and Le Doussal 1985, Benettin 
1984); stadion (Benettin 1984)). 

(b) Calculation of the Lyapounov exponent A (Kolmogorov entropy) associated 
with the motion of a particle in an inhomogeneous magnetic field (Rechester et a1 
1979). A - b2l3 where b is a measure of the field’s inhomogeneity. (In this case, the 
perturbation of Qo is a different, but the ‘renormalisation’ transformation is the same 
as in case (a).) 

(c) NMR spectrum of a particle with spin diffusing on a line according to a Brownian 
motion in a linearly varying magnetic field. The problem can be written in the following 
way: 

x,, ,  = x, + D”2[ , ,  B , + ~  = e + gbx,, (3.9) 

where x, is the position, 6, a Gaussian process, D the diffusion coefficient, 6, is the 
angle of a transverse component of the spin and b the field gradient. 

The frequency distribution ( N M R  spectrum) is p ( w )  with 

O N  
w =  lim -. 

N-m N 

The above formalism allows us to obtain the width of p ( w )  as 

(w2)1/2, D 1 / 3 ( g b ) 2 / 3  

which is the classical result (Abragam 1960). 
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4. Link between localisation and intermittency 

4.1. Intermittency: muin fearures 

Pomeau-Manneville’s intermittency (Pomeau and Manneville 1980a, b) schematically 
models the dynamics of a variable whose behaviour is characterised by a succession 
of ‘laminar’, quasi-periodic eras and chaotic bursts, as encountered in the transition 
to turbulence. The mapping describing the dynamics of some Poincark section of the 
flow has, in the laminar region, the following generic form: 

Xi+l  = f,(Xi) = p +xi  -x i  2 + * . . , 
(see figure 4). When xi  leaves the ‘channel’, a chaotic burst appears until non-linear 
terms reinject the ‘particle’ in the channel. This mapping has been fully discussed 
(Pomeau and Manneville 1980a, b, Hirsh et ul 1982) in the deterministic case ( F  = 
constant) as well as in the probabilistic case (Eckmann er a1 1981), 

p small 

f , , f  = p + 61 +XI - x f + .  . . , (4.1) 

where 6, is a random ‘noise’. 

A 

Figure 4. An archetype of intermittent mapping. Bold curves, the function f, = 2 + + l / x  
at threshold ( p  = 0). Dotted curve, the effect of a positive (or negative) noise 5 and the 
appearance of a transient fixed point (for [> 0). 

Two interesting quantities can be defined in this problem. 
(i) The laminar time TL, i.e. the number of successive iterations the particle spends 

(ii) The Lyapounov exponent A, defined for any mapping as 
in the channel. 

A = N+w lim N - ’  log18fN/axl. (4.2) 

Assuming an ergodic property?, those two quantities can be expressed through the 
asymptotic measure of the problem, p Z t ,  as 

r - 1  

Ti’ - J ~ pZ*(x) dx, 
--CO 

I A property which may not be true of 5, = 0 (see discussion in I 4.3). 

(4 .3a )  
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5 +m 

A = 5 p%*(x) log If'(x)l dx = xpZ'(x) dx. 
-m 

Eckmann et a1 (1981) showed that, for small 6 and p, 

(4.3 b )  

(4.4) 

with x = t 2 l 3 t ,  which gives, for t = 0, the well known result 

( P > O )  
- 1 / 2  TL-P 

and, for p = 0, TL- 5-2/3. 

for one-dimensional intermittency with noise (Eckmann et al 1981). 
TL is thus expressed as TL(& p ) = p - ' / *  F ( 5 4 / 3 / p )  where F is a universal function 

4.2. Localisation 

In this section we consider the one-dimensional Schrodinger equation in a random 
potential 

cCII+1-2~I+cCIl-1=(E- VZ)cCII. (4.5) 

As explicitly shown in the appendix, this is equivalent to studying the product of 
random matrices (2.1). Introducing R,,, = 

(4.6) 

For 6, = 0, the functionf(x) = 2 -x-' has exactly the shape of an intermittent Pomeau- 
Manneville function (figure 4) including the reinjection process (see 0 4.3). When R, 
is close to 1 (RI  = 1 + x,, x << l ) ,  one has 

we have 

RI+, = 2 + p + 6, - 1/ R, with p c  - E ,  el= v.? 

XI+, = 6, + XI - xf + /.L + . . . 
which must be compared with (4.1). 

The localisation length of the problem is defined through 
r N  

Introducing the distribution p (  R) of the variable Ri verifying a Dyson (1953) relation, 

p (R)  = 5 1  d t p ( t )  dR' 6(R - 2 -  6 - p  + l /R')p(R') (4.9) 

( ~ ( 6 )  is the noise distribution), we obtain the analogue, for the mapping (4.6), of the 
asymptotic measure defined in Q 4.1. This probability distribution p (R)  allows us 
to compute the inverse localisation length (Derrida and Gardner 1984) as 

(4.10) 

In the continuous limit one can show (Sulem 1973) that for small cp* ,  

Im q* 2 2$/9( = 2 ~ ~ ) .  

t In the optical problem p - ec - e. 
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This is due to the fact that for a complex initial Ro, RN obtained through (4.6) is real 
when N+m.  We can thus further specify the distribution law of Im q*: it is simply 
given by the distribution of x :  p G 6 ( x )  written in (4.4). This is consistent with (3.7) 
obtained through scaling, as p g 6 ( x )  only depends on t = ~ 1 5 ~ ’ ~ .  In figure 5 we give a 
sketch of this function for p = 0. 

+ : i i m  lp)/c2’3 

Figure 5. The distribution law of p(v* )  as a function of the scaled variable (Im ( ~ * ) / 5 ~ ’ ~ .  

Thus, we point out that, in order to study a localisation problem, one is naturally 
led to introduce an intermittent mapping of the form (4.7). There is a close correspon- 
dence between the interesting quantities relevant in dynamical system analysis and the 
physically important observables in localisation. Indeed, the inverse localisation length 
defined by (4.8) is exactly minus one half the Lyapounov exponent A ’  of the intermittent 
mapping (4.6) given by (4.36) (see 0 4.3 below); in the same way, the imaginary part 
of A f, defined in Derrida and Gardner (1984), counts the number of sign changes of 
&-that is, the number of chaotic bursts in the intermittent problem. As this number 
is simply the inverse of the ‘laminar time’ usually considered, we have 

l/T,-Im A. 

Thus, according to Derrida and Gardner (1984), we have 

(4.11) 

which is nothing but the formula (4.1) appearing in Eckmann et a1 (1981) for the 
laminar time of a general one-dimensional intermittent mapping with noise. 

This analogy allows us in particular: 
( 1 )  to interpret the ‘jumps’ in the curve Im cp( N )  (figure 3)  as chaotic bursts. These 

bursts also correspond to moments where the coefficients cN of the matrix TN changes 
sign; 

t This imaginary part is also the rotation number of the Row (2.7).  
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(2) to predict the scaling behaviours for 8 near the critical angle 8, by writing 
everywhere 

I-r - e,- e. 

4.3. The limit t+ 0 

The following point needs clarification: formula (4.10) leads, in the limit 5-0, to: 
(i) A ’  = 0 for p < 0 (no  fixed point for the mapping (4.6)); 
(ii) A ’ =  -& for p>O (one stable fixed point xo-&). 
Nevertheless, we are accustomed to think that the case p < O  (no fixed point) is 

the ‘chaotic phase’-its stochasticity being characterised by a positive Lyapounov 
exponent growing as 6. A closer analysis shows that this positive exponent is 
entirely due to the chaotic reinjection processes (bursts) giving a contribution to A ’  of 
order A’-number of chaotic bursts - l / T , + - G  (following (4.11)). The channel 
contribution to A is strictZy zero. The reinjection process contained in the 1 /R  part 
of mapping (4.6) is not ‘stochastic’ enough; this is linked with the fact that (4.6) without 
noise is not ergodic (it is in fact periodic whenever 6 is rational). Without noise, 
the asymptotic measure p (  R )  loses its meaning. 

On the contrary, when there exists a fixed point, A ’  is negative as it should be 
(contraction of phase space). When the noise comes in, formula (4.10) also leads to 
a negative A‘;  this is because only the existence (even temporary-when ti + p > 0) of 
a fixed point contributes (negatively) to A’:  the channel contribution is zero and the 
bursts contribution cannot be calculated with the. local analysis (around R = 1) 
developed by Derrida and Gardner (1984) and Eckmann et a1 (1981). It may be that, 
for another mapping, a sufficiently chaotic reinjection and the transient fixed point 
compete in the determination of A’.  

5. Conclusion 

In this paper, we showed that the reflection coefficient r of a set of N random layers 
has a well defined (but sample-dependent) limit when N + CO. This coefficient is not 
equal to one; instead, the distribution law of cp = 1 - r depends only on (Im q ~ ) / 5 * ’ ~  
(where t2 is the noise variance) if the incidence angle is the mean total reflection angle. 
This scaling is quite easily obtained with the help of a close analysis of the expected 
asymptotic form of the random matrix product (0 2.4), and the distribution of Im cp 
can be specified entirely. 

We also unveiled a strong link between intermittency and localisation, hoping that 
certain physical concepts important in localisation may prove useful in fluid mechanics. 
Let us note that in fact intermittency follows from a wave equation At) = -Et) near 
E = 0, or, seen differently, when a squared mass vanishes. 

Intermittency might thus be deeply connected to second-order phase transitions; 
the problem dealt with in this paper is in fact, in a way, such a phase transition, where 
the order parameter is the localisation length and the noise an external field. 
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Appendix 

The Schrodinger equation (4.5) can be written 

*1+1 - *I 

with & = V, - E. This is very close to the form (2.1) for QI and the difference is clearly 
irrelevant for small &. 
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